Last modified on 13 October 2014, at 06:49

Antikythera mechanism

For the BT song "The Antikythera Mechanism", see This Binary Universe.
The Antikythera mechanism (Fragment A – front)
The Antikythera mechanism (Fragment A – back)

The Antikythera mechanism (/ˌæntɨkɨˈθɪərə/ ANT-i-ki-THEER or /ˌæntɨˈkɪθərə/ ANT-i-KITH-ə-rə) is an ancient analog computer[1][2][3][4] designed to predict astronomical positions and eclipses. It was recovered in 1900–01 from the Antikythera wreck, a shipwreck off the Greek island of Antikythera.[5] The instrument was designed and constructed by Greek scientists and has been dated between 150 to 100 BC.[6] After the knowledge of this technology was lost at some point in antiquity, technological artifacts approaching its complexity and workmanship did not appear again until the 14th century, when mechanical astronomical clocks began to be built in Western Europe.[7]

The mechanism was housed in a wooden box about 340 × 180 × 90 mm in size and comprised 30 bronze gears (although more could have been lost). The largest gear, clearly visible in fragment A, was about 140 mm in diameter and had 223 teeth. The mechanism's remains were found as 82 separate fragments of which only seven contain any gears or significant inscriptions.[8][9]

Since their discovery the fragments of the Antikythera mechanism are kept at the National Archaeological Museum of Athens.

Origins and discoveryEdit

This machine has the oldest known complex gear mechanism and is sometimes called the first known analog computer,[10][11][12][13][14][15][16][17] although the quality of its manufacture suggests that it had undiscovered predecessors[18] during the Hellenistic Period.

It appears to be constructed upon theories of astronomy and mathematics developed by Greek astronomers and is estimated to have been made around 100 BC. In 1974, British science historian and Yale University professor Derek de Solla Price concluded from gear settings and inscriptions on the mechanism's faces that the mechanism was made about 87 BC and was lost only a few years later.[5] Jacques Cousteau visited the wreck in 1978[19] and recovered new dating evidence. It is believed the mechanism was made of a low-tin bronze alloy (95% copper, 5% tin), but the device's advanced state of corrosion has made it impossible to perform an accurate compositional analysis.[20] All of the mechanism's instructions are written in Koine Greek, and the consensus among scholars is that the mechanism was made in the Greek-speaking world.

Recent findings of The Antikythera Mechanism Research Project suggest the concept for the mechanism originated in the colonies of Corinth, since some of the astronomical calculations seem to indicate observations that can be made only in the Corinth area of ancient Greece. Syracuse was a colony of Corinth and the home of Archimedes, which might imply a connection with the school of Archimedes.[21] Another theory states that coins found by Jacques Cousteau in the 1970s at the wreck site and dated to the time of the construction of the device, suggest that its origin may have been from the ancient Greek city of Pergamon.[22] Pergamon was also the site of the famous Library of Pergamum which housed many scrolls of art and science. The Library of Pergamum was second in importance to the Library of Alexandria during the Hellenistic period.

The ship carrying the device also contained vases that were in the Rhodian style. One hypothesis is that the device was constructed at an academy founded by the Stoic philosopher Posidonius on the Greek island of Rhodes, which at the time was known as a center of astronomy and mechanical engineering; this hypothesis further suggests that the mechanism may have been designed by the astronomer Hipparchus, since it contains a lunar mechanism which uses Hipparchus's theory for the motion of the Moon. Hipparchus was thought to have worked from about 140 BC to 120 BC. Rhodes was a trading port at that time.[7]

The mechanism was discovered in a shipwreck off Point Glyphadia on the Greek island of Antikythera. The wreck was found in April 1900 by a group of Greek sponge divers. They retrieved numerous artifacts, including bronze and marble statues, pottery, unique glassware, jewelry, coins, and the mechanism itself, which were transferred to the National Museum of Archaeology in Athens for storage and analysis. The mechanism itself went unnoticed for two years: it was a lump of corroded bronze and wood and the museum staff had many other pieces with which to busy themselves.[7] On 17 May 1902, archaeologist Valerios Stais was examining the finds and noticed that one of the pieces of rock had a gear wheel embedded in it. Stais initially believed it was an astronomical clock, but most scholars considered the device to be prochronistic, too complex to have been constructed during the same period as the other pieces that had been discovered. Investigations into the object were soon dropped until Derek J. de Solla Price became interested in it in 1951.[23] In 1971, both Price and a Greek nuclear physicist named Charalampos Karakalos made X-ray and gamma-ray images of the 82 fragments. Price published an extensive 70-page paper on their findings in 1974.[7] It is not known how it came to be on the cargo ship, but it has been suggested that it was being taken to Rome, together with other treasure looted from the island, to support a triumphal parade being staged by Julius Caesar.[24]

Cardiff University professor Michael Edmunds, who led a 2006 study of the mechanism, described the device as "just extraordinary, the only thing of its kind", and said that its astronomy was "exactly right". He regarded the Antikythera mechanism as "more valuable than the Mona Lisa".[25][26]

Description of the remainsEdit

[6][27][28]

The original mechanism apparently came out of the Mediterranean as a single encrusted piece. Soon afterwards it fractured into three major pieces. Other small pieces have broken off in the interim from cleaning and handling,[29] and still others were found on the sea floor by the Cousteau expedition. Other fragments may still be in storage, undiscovered since their initial recovery; Fragment F came to light in that way in 2005.

Of the 82 known fragments, seven are mechanically significant and contain the majority of the mechanism and inscriptions. There are also 16 smaller parts that contain fractional and incomplete inscriptions.

Major fragmentsEdit

Fragment Size [mm] Weight [g] Gears Inscriptions Notes
A 180 × 150 369.1 27 Yes The main fragment and contains the majority of the known mechanism. Clearly visible on the front is the large b1 gear, and under closer inspection further gears behind said gear (parts of the l, m, c and d trains are clearly visible as gears to the naked eye). The crank mechanism socket and the side mounted gear that meshes with b1 is on Fragment A. The back of the fragment contains the rearmost e and k gears for synthesis of the moon anomaly, noticeable also is the pin and slot mechanism of the k train. It is noticed from detailed scans of the fragment that all gears are very closely packed and have sustained damage and displacement due to their years in the sea. The fragment is approximately 30 mm thick at its thickest point.

Fragment A also contains divisions of the upper left quarter of the Saros spiral and 14 inscriptions from said spiral. The fragment also contains inscriptions for the Exeligmos dial and visible on the back surface the remnants of the dial face itself. Finally, this fragment contains some back door inscriptions.

B 125 × 60 99.4 1 Yes Contains approximately the bottom right third of the Metonic spiral and inscriptions of both the spiral and back door of the mechanism. The Metonic scale would have consisted of 235 cells of which 49 have been deciphered from fragment B either in whole or partially. The rest so far are assumed from knowledge of the Metonic cycle itself. This fragment also contains a single gear (o1) used in the Olympic train.
C 120 × 110 63.8 1 Yes Contains parts of the upper right of the front dial face showing calendar and zodiac inscriptions. This fragment also contains the moon indicator dial assembly including the moon phase sphere in its housing and a single bevel gear (ma1) used in the moon phase indication system.
D 45 × 35 15.0 1 Contains at least one unknown gear and according to M.T.Wright possibly two. Their purpose and position has not been ascertained to any accuracy or consensus but lends to the debate for the possible planet displays on the face of the mechanism.
E 60 × 35 22.1 Yes Found in 1976 and contains 6 inscriptions from the upper right of the Saros spiral.
F 90 × 80 86.2 Yes Found in 2005 and contains 16 inscriptions from the lower right of the Saros spiral. It also contains remnants of the mechanism's wooden housing.
G 125 × 110 31.7 Yes A combination of fragments taken from fragment C while cleaning.

Minor fragmentsEdit

Many of the smaller fragments that have been found contain nothing of value, however, a few have some inscriptions on them.

Fragment 19 contains significant back door inscriptions including one reading "...76 years...." which refers to the Callippic cycle. Other inscriptions seem to describe the function of the back dials. In addition to this important minor fragment, 15 further minor fragments have remnants of inscriptions on them.

MechanismEdit

Schematic of the artifact's known mechanism

Information on the specific data gleaned from the ruins by the latest inquiries are detailed in the supplement to Freeth's 2006 Nature article.[6]

OperationEdit

On the front face of the mechanism (see reproduction here:[30]) there is a fixed ring dial representing the ecliptic, the twelve zodiacal signs marked off with equal 30 degree sectors. This matched with the Babylonian custom of assigning one twelfth of the ecliptic to each zodiac sign equally, even though the constellation boundaries were variable. Outside of that dial is another ring which is rotatable, marked off with the months and days of the Sothic Egyptian calendar, twelve months of 30 days plus five intercalary days. The months are marked with the Egyptian names for the months transcribed into the Greek alphabet. The first task, then, is to rotate the Egyptian calendar ring to match the current zodiac points. The Egyptian calendar ignored leap days, so it advanced through a full zodiac sign in about 120 years.[31]

The mechanism was operated by turning a small hand crank (now lost) which was linked via a crown gear to the largest gear, the four-spoked gear visible on the front of fragment A, the gear named b1. This moved the date pointer on the front dial, which would be set to the correct Egyptian calendar day. The year is not selectable, so it is necessary to know the year currently set, or by looking up the cycles indicated by the various calendar cycle indicators on the back in the Babylonian ephemeris tables for the day of the year currently set, since most of the calendar cycles are not synchronous with the year. The crank moves the date pointer about 78 days per full rotation, so hitting a particular day on the dial would be easily possible if the mechanism was in good working condition. The action of turning the hand crank would also cause all interlocked gears within the mechanism to rotate, resulting in the simultaneous calculation of the position of the Sun and Moon, the moon phase, eclipse and calendar cycles, and perhaps the locations of planets.

The operator also had to be aware of the position of the spiral dial pointers on the two large dials on the back. The pointer had a "follower" that tracked the spiral incisions in the metal as the dials incorporated four and five full rotations of the pointers. When a pointer reached the terminal month location at either end of the spiral, the pointer's follower had to be manually moved to the other end of the spiral before proceeding further.

FacesEdit

Computer-generated front panel of the Freeth model.

Front faceEdit

The front dial has two concentric circular scales which represent the path of the ecliptic through the heavens. The outer ring is marked off with the days of the 365-day Egyptian calendar, or the Sothic year, based on the Sothic cycle. On the inner ring, there is a second dial marked with the Greek signs of the Zodiac and divided into degrees. The outer calendar dial can be moved against the inner dial to compensate for the effect of the extra quarter day in the solar year by turning the scale backwards one day every four years. A 36514-day year was used in the Callippic cycle about 330 BC and in the Decree of Canopus in 238 BC, but that is not reflected in the dials.

The position of the sun on the ecliptic is synonymous with the current date in the year. The moon and the five planets known to the Greeks travel along the ecliptic fairly closely, close enough that it makes sense defining their position on the ecliptic.

The following months are inscribed, in Greek letters, on the outer ring:

  • ΘΟΘ (Thoth)
  • ΦΑΩΦΙ (Phaophi)
  • ΑΟΤΡ (Athyr, Hathor)
  • ΧΟΙΑΚ (Choiak)
  • ΤΥΒΙ (Tybi)
  • ΜΕΧΕΙΡ (Mecheir)
  • ΦΑΜΕΝΩΘ (Phamenoth)
  • ΦΑΡΜΟΥΘΙ (Pharmouthi)
  • ΠΑΧΩΝ (Pachon)
  • ΠΑΥΝΙ (Payni)
  • ΕΠΙΦΙ (Epiphi)
  • ΜΕΣΟΡΗ (Mesore)
  • ΕΠ Ep[agomene]

The zodiac dial contains inscriptions of the members of the zodiac, which is believed to be tropical as opposed to sidereal:

Front panel of a 2007 reproduction.
  • ΚΡIOΣ (Krios (Ram), Aries)
  • ΤΑΥΡΟΣ (Tavros (Bull), Taurus)
  • ΔIΔΥΜΟΙ (Didymoi (Twins), Gemini)
  • ΚΑΡΚIΝΟΣ (Karkinos (Crab), Cancer)
  • ΛEΩΝ (Leon (Lion), Leo)
  • ΠΑΡΘEΝΟΣ (Parthenos (Maiden), Virgo)
  • ΧΗΛΑΙ (Chelai (Scorpio's Claw aka Zygos), Libra)
  • ΣΚΟΡΠΙΟΣ (Skorpios (Scorpion), Scorpio)
  • ΤΟΞΩΤΗΣ (Toxotes (Archer), Sagittarius)
  • ΑIΓOΚΕΡΩΣ (Aigokeros (Sea goat), Capricorn)
  • YΔΡΟΚΟΟΣ (Hydrokoos (Water carrier), Aquarius)
  • IΧΘΕIΣ (Ichtheis (Fish), Pisces)

Also on the zodiac dial are a number of single characters at specific points (see reconstruction here:[30]). They are keyed to a parapegma, a precursor of the modern day almanac inscribed on the front face beyond the dials, and they mark the locations of specific stars' longitudes on the ecliptic. Some of the parapegma reads (brackets indicate inferred text):

  • {Κ} Evening
  • {Λ} The Hyades set in the evening
  • {Μ} Taurus begins to rise
  • {N} Vega rises in the evening
  • {Θ} The Pleiades rise in the morning
  • {Ο} The Hyades rise in the morning
  • {Π} Gemini begins to rise
  • {Ρ} Altair rises in the evening
  • {Σ} Arcturus sets in the morning

At least two pointers indicated positions of bodies upon the ecliptic. A lunar pointer indicated the moon's position, and a mean sun pointer was also shown. The moon position was not a simple mean moon indicator which would indicate movement uniformly around a circular orbit; it allowed for the acceleration and deceleration typical of what we know today is an elliptical orbit, through the first ever known use of epicyclic gearing. It also tracked the precession of the elliptical orbit around the ecliptic in a 8.88 year cycle. The mean sun position is, by definition, the current date. It is speculated that since such pains were taken to get the moon's position correct, then there was likely to have also been a "true sun" pointer in addition to the mean sun pointer to likewise track the elliptical anomaly of the sun (actually the Earth's orbit around the sun), but there is no sign of it in the mechanism today, nor for the possibility, unsupported by the ruins, of planetary orbit pointers for the five then-known planets. See Proposed planet indication gearing schemes below.

Finally, Michael Wright has shown that there was a mechanism to supply the lunar phase in addition to the position.[32] The indicator was a small ball embedded in the lunar pointer, half white and half black, which rotated to show the phase (new, 1st quarter, half, 3rd quarter, full and back) graphically. The data to support this function is available given the sun and moon positions as angular rotations; it is essentially the angle between the two translated into the ball's rotation. It requires a differential gear, a gearing arrangement that sums or differences two angular inputs. Among its other firsts, the Antikythera Mechanism is the first verified construction of a deliberate differential gear scheme in history.

Rear faceEdit

Computer-generated back panel

In July 2008, scientists reported new findings in the journal Nature showing that the mechanism tracked not only the Metonic calendar and predicted solar eclipses, but also calculated the timing of the Ancient Olympic Games.[21] Inscriptions on the instrument closely match the names of the months on calendars from Illyria and Epirus in northwestern Greece and with the island of Corfu.[17][33]

On the back of the mechanism, there are five dials: the two large displays, the Metonic and the Saros, and three smaller indicators, the Olympiad, the Callippic, and the Exeligmos.

The Metonic Dial is the main upper dial. The Metonic cycle, defined in several physical units, is 235 synodic months, which is very close (less than 13 parts per million difference) to 19 tropical years. It is therefore a convenient interval over which to convert between lunar and solar calendars. The Metonic dial covers 235 months in 5 rotations of the dial, following a spiral track with a follower on the pointer that keeps track of the layer of the spiral. The pointer points to the synodic month, counted from new moon to new moon, and the cell contains the Corinthian month names:

  1. ΦΟΙΝΙΚΑΙΟΣ (Phoinikaios)
  2. ΚΡΑΝΕΙΟΣ (Kraneios)
  3. ΛΑΝΟΤΡΟΠΙΟΣ (Lanotropios)
  4. ΜΑΧΑΝΕΥΣ (Machaneus)
  5. ΔΩΔΕΚΑΤΕΥΣ (Dodekateus)
  6. ΕΥΚΛΕΙΟΣ (Eukleios)
  7. ΑΡΤΕΜΙΣΙΟΣ (Artemisios)
  8. ΨΥΔΡΕΥΣ (Psydreus)
  9. ΓΑΜΕΙΛΙΟΣ (Gameilios)
  10. ΑΓΡΙΑΝΙΟΣ (Agrianios)
  11. ΠΑΝΑΜΟΣ (Panamos)
  12. ΑΠΕΛΛΑΙΟΣ (Apellaios)

Thus, setting the correct solar time (in days) on the front panel will indicate the current lunar month on the back to within a week or so resolution.

The Callippic dial is the left secondary upper dial, which follows a 76-year cycle. The Callippic cycle is four Metonic cycles, and this dial indicates which of the four Metonic cycles is the current one in the Callippic cycle.

The Olympiad dial is the right secondary upper dial; it is the only pointer on the instrument which travels in a counter-clockwise direction as time is advanced. The dial is divided into four sectors, each of which is inscribed with a year indicator and the name of two Panhellenic Games: the "crown" games of Isthmia, Olympia, Nemea, and Pythia; and two lesser games: Naa (held at Dodona) and another games which has not yet been deciphered.[34] The inscriptions on each one of the four divisions are:

Olympic dial
Year of the cycle Inside the dial inscription Outside the dial inscription
1 LA ΙΣΘΜΙΑ (Isthmia)
ΟΛΥΜΠΙΑ (Olympia)
2 LB NEMEA (Nemea)
NAA (Naa)
3 ΙΣΘΜΙΑ (Isthmia)
ΠΥΘΙΑ (Pythia)
4 L∆ ΝΕΜΕΑ (Nemea)
[undeciphered]

The Saros dial is the main lower spiral dial. The Saros cycle is 18 years and 11⅓ days long (6585.333... days), which is very close to 223 synodic months (6585.3211 days). It is defined as the cycle of repetition of the positions required to cause solar and lunar eclipses, and therefore it can be used to predict them — not only the month, but the day and time of day. Note that the cycle is about 8 hours longer than an integer number of days. Translated into global spin, that means an eclipse occurs not only eight hours later, but 1/3 of a rotation farther to the west. Glyphs in 51 of the 223 synodic month cells of the dial specify the occurrence of 38 lunar and 27 solar eclipses. Some of the abbreviations in the glyphs read:

  • Σ = ΣΕΛΗΝΗ (Moon)
  • Η = ΗΛΙΟΣ (Sun)
  • H\M = ΗΜΕΡΑΣ (of the day)
  • ω\ρ = ωρα (hour)
  • N\Y = ΝΥΚΤΟΣ (of the night)

The glyphs show whether the eclipse is solar or lunar, and give the day of the month and hour; obviously, solar eclipses may not be visible at any given point, and lunar eclipses are visible only if the moon is above the horizon at the appointed hour.

The Exeligmos Dial is the secondary lower dial. The Exeligmos cycle is a 54-year triple Saros cycle, 19,756 days long. Since the length of the Saros cycle is to a third of a day (eight hours), so a full Exeligmos cycle returns counting to integer days, hence the inscriptions. The labels on its three divisions are:

  • Blank, which represents the number zero.
  • H (number 8)
  • Iϛ (number 16)

Thus the dial pointer indicates how many hours must be added to the glyph times of the Saros dial in order to get the exact eclipse times.

DoorsEdit

The mechanism has a wooden casing with a front and a back door. The Back Door appears to be the "Instruction Manual". On one of its fragments is written "76 years, 19 years" representing the Callippic and Metonic cycles. Also written is "223" for the Saros cycle. On another one of its fragments is written on the spiral subdivisions "235" for the Metonic dial. The front door also has inscriptions.[21][35]

GearingEdit

The mechanism is remarkable for the level of miniaturisation and the complexity of its parts, which is comparable to that of 14th-century astronomical clocks. It has at least 30 gears, although Michael Wright has suggested that the Greeks of this period were capable of implementing a system with many more gears.[citation needed] There is much debate that the mechanism may have had indicators for all five of the planets known to the ancient Greeks. No gearing for such a planetary display survives and all gears are accounted for, with the exception of one 63 toothed gear (r1) otherwise unaccounted for in fragment D.c

The purpose of the front face was to position astronomical bodies with respect to the celestial sphere along the ecliptic, in reference to the observer's position on the Earth. That is irrelevant to the question of whether that position was computed using a heliocentric or geocentric view of the solar system; either computational method should and does result in the same position (ignoring ellipticity), within the error factors of the mechanism. Ptolomy's epicyclic solar system (still 300 years in the mechanism's future), carried forward with more epicycles, was more accurate predicting the positions of planets than Copernicus' view, until Kepler introduced the possibility that orbits are ellipses.[36]

Evans et al. suggest that to display the mean positions of the five classical planets would require only 17 further gears which could be positioned in front of the large driving gear and indicated using individual circular dials on the face.[37]

Tony Freeth and Alexander Jones have modeled and published details of a version using several gear trains mechanically similar to the lunar anomaly system allowing for indication of the planets' positions as well as synthesis of the sun anomaly. Their system, they claim, is more authentic than Wright's model as it utilises the known skill sets of the Greeks of that period and does not add excessive complexity or internal stresses to the machine.[31]

The gear teeth were in the form of equilateral triangles with an average circular pitch of 1.6 mm, an average wheel thickness of 1.4 mm and an average air gap between gears of 1.2 mm. The teeth were probably created from a blank bronze round using hand tools; this is evident because they are not all even.[31] Due to advances in imaging and X-ray technology it is now possible to know the precise number of teeth and size of the gears within the located fragments. Thus the basic operation of the device is no longer a mystery and has been accurately replicated. The major unknown now regards the presence and nature of any planet indicators.

A table of the gears, their teeth, and the expected and computed rotations of various of the important gears follows. The gear functions comes from Freeth et al. (2008) [21] and those for the lower half of the table from Freeth and Jones 2012.[31] The computed values start with 1 year/revolution for the b1 gear, and the remainder are computed directly from gear teeth ratios. The gears marked with the * are missing, or have predecessors missing, from the known mechanism; these gears have been estimated with reasonable gear teeth counts.

The Antikythera Mechanism: known gears and accuracy of computation
Gear name Function Expected simulated interval of a 360 degree revolution Formula ("Time" is interval represented by one complete revolution of the gear) Computed value
B1, B2 Year gear 1 tropical year 1 (by definition) 1 year (assumed)
E2, K1, K2, E6, B3 the moon's orbit 1 sidereal month (27.321661 days) Time(E2,K1,K2,E6,B3) = Time(B1) * C1 / B2 * D1 / C2 * E2 / D2 27.321 days (on average)
R1 lunar phase display 1 synodic month (29.530589 days) Time(R1) = 1 / (1 / Time(B2 [mean sun] or sun3 [true sun])) + (1 / Time(B3))) 29.530 days
N1* Metonic pointer Metonic cycle () / 5 spirals around the dial = 1387.94 days Time(N1) = Time(B1) * (L1 / B2) * (M1 /L2) * (N1 / M2) 1387.9 days
O1* Olympiad pointer 4 years Time(O1) = Time(N1) * (O1 / N3) 4.00 years
Q1* Callippic pointer 27758.8 days Time(Q1) = Time(N1) * (P1 / N2) * (Q1 /P2) 27758 days
E3* lunar orbit precession 8.85 years Time(E3) = Time(B1) * (L1 / B2) * (M1 / L2) * (E3 / M3) 8.8826 years
G1* Saros cycle Saros time / 4 turns = 1646.33 days Time(G1) = Time(E3) * (F1 / E4) * (G1 / F2) 1646.3 days
I1* Exeligmos pointer 19755.8 days Time(I1) = Time(G1) * (H1 / G2) * (I1 / H2) 19756 days
The following are proposed gearing from the 2012 Freeth and Jones reconstruction:
sun3* True sun pointer 1 mean year Time(sun3) = Time(B1) * (sun3 / sun1) * (sun2 / sun3) 1 mean year (on average)
mer2* Mercury pointer 115.88 days (synodic period) Time(mer2) = Time(B1) * (mer2 / mer1) 115.89 days (on average)
ven2* Venus pointer 583.93 days (synodic period) Time(ven2) = Time(B1) * (ven1 / sun1) 584.39 days (on average)
mars4* Mars pointer 779.96 days (synodic period) Time(mars4) = Time(B1) * (mars2 / mars1) * (mars4 / mars3) 779.84 days (on average)
jup4* Jupiter pointer 398.88 days (synodic period) Time(jup4) = Time(B1) * (jup2 / jup1) * (jup4 / jup3) 398.88 days (on average)
sat4* Saturn pointer 378.09 days (synodic period) Time(sat4) = Time(B1) * (sat2 / sat1) * (sat4 / sat3) 378.06 days (on average)

There are several gear ratios for each planet which results in close matches to the correct values for synodic periods of the planets and the sun. The ones chosen above seem to provide good accuracy with reasonable tooth counts, but the specific gears which may have been used are, and probably will remain, unknown.[31]

Known gear schemeEdit

[6][27][38]

A schematic representation of the gearing of the Antikythera Mechanism, including the latest published interpretation of existing gearing, gearing added to complete known functions and proposed gearing to accomplish additional functions, namely true sun pointer and pointers for the five then-known planets, as proposed by Freeth and Jones, 2012. Proposed gearing crosshatched. Note: There are errors in lun1-4, see image talk page for details.

The Sun gear is operated from the hand operated crank (connected to gear a1, driving the large four-spoked mean sun gear, b1) and in turn drives the rest of the gear sets. The sun gear is b1/b2 and b2 has 64 teeth. It directly drives the date/mean sun pointer (there may have been a second, "true sun" pointer which displayed the sun's elliptical anomaly; that is discussed below in the Freeth reconstruction). In this discussion, we refer to modeled rotational period of various pointers and indicators; they all assume the input rotation of the b1 gear of 360 degrees, corresponding with one tropical year, and are computed solely on the basis of the gear ratios of the gears named.

The Moon train starts with gear b1 and proceeds through c1, c2, d1, d2, e2, e5, k1, k2, e6, e1 and b3 to the moon pointer on the front face. The gears k1 and k2 form an epicyclic gear system; they are an identical pair of gears that don't mesh, but rather they operate face-to-face, with a short pin on k1 inserted into a slot in k2. The two gears have different centres of rotation, so the pin must move back and forth in the slot. That increases and decreases the radius at which k2 is driven, necessarily also varying its angular velocity (assuming the velocity of k1 is even) faster in some parts of the rotation than others. Over an entire revolution the average velocities are the same, but the fast-slow variation models the effects of the moon's elliptical orbit, in consequence of Kepler's 2nd and 3rd laws. The modeled rotational period of the moon pointer (averaged over a year) is 27.321 days, compared to the modern length of a lunar sidereal month of 27.321661 days. As mentioned, the pin/slot driving of the k1/k2 gears varies the displacement over a year's time, and the mounting of those two gears on the e3 gear supplies a precessional advancement to the ellipticity modelling with a period of 8.8826 years, compared with the current value of precession period of the moon of 8.85 years.

The system also models the phases of the moon. The moon pointer holds a shaft along its length, on which is mounted a small gear named r, which meshes to the sun pointer at B0 (the connection between B0 and the rest of B is not visible in the original mechanism, so whether b0 is the current date/mean sun pointer or a hypothetical true sun pointer is not known). The gear rides around the dial with the moon, but is also geared to the sun — the effect is to perform a differential gear operation, so the gear turns at the synodic month period, measuring in effect the angle of the difference between the sun and moon pointers. The gear drives a small ball that appears through an opening in the moon pointer's face, painted longitudinally half white and half black, displaying the phases pictorially. It turns with an modeled rotational period of 29.53 days; the modern value for the synodic month is 29.530589 days.

The Metonic train is driven by the drive train b1, b2, l1, l2, m1, m2 and n1, which is connected to the pointer. The modeled rotational period of the pointer is the length of the 6939.5 days (over the whole five-rotation spiral), while the modern value for the Metonic cycle is 6939.7 days.

The Olympiad train is driven by b1, b2, l1, l2, m1, m2, n1, n3 and o1, which mounts the pointer. It has a computed modeled rotational period of exactly 4 years, as expected. It is, incidentally, the only pointer on the mechanism which rotates counter-clockwise; all the others rotate clockwise.

The Callippic train is driven by b1, b2, l1, l2, m1, m2, n1, n2, p1, p2 and q1, which mounts the pointer. It has a computed modeled rotational period of 27758 days, while the modern value is 27758.8 days.

The Saros train is driven by b1, b2, l1, l2, m1, m3, e3, e4, f1, f2 and g1, which mounts the pointer. The modeled rotational period of the Saros pointer is 1646.3 days (in four rotations along the spiral pointer track); the modern value is 1636.33 days.

The Exeligmos train is driven by b1, b2, l1, l2, m1, m3, e3, e4, f1, f2, g1, g2, h1, h2 and i1, which mounts the pointer. The modeled rotational period of the Exeligmos pointer is 19756 days; the modern value is 19755.96 days.

Gears m3, n1-3, p1-2 and q1 did not survive in the wreckage. The functions of the pointers was deduced from the remains of the dials on the back face, and reasonable, appropriate gearage to fulfill the functions was proposed, and is generally accepted.

Proposed planet indication gearing schemesEdit

Because of the large space between the mean sun gear and the front of the case and the size of and mechanical features on the mean sun gear it is very likely that the mechanism contained further gearing that has either been lost in or subsequent to the shipwreck or was removed before being loaded onto the ship. This lack of evidence and nature of the front part of the mechanism has led to numerous attempts to emulate what the Greeks of the period would have done and of course because of the lack of evidence many solutions have been put forward.

Wright proposal
Evans et al. proposal
Freeth et al. proposal

Michael Wright was the first person to design and build a model with not only the known mechanism but also with his emulation of a potential planetarium system. He suggested that along with the lunar anomaly the deeper more basic solar anomaly (known as the "first anomaly") would also be adjusted for. He included pointers for this "true sun", Mercury, Venus, Mars, Jupiter and Saturn, in addition to the known "mean sun" (current time) and lunar pointers.

Evans, Carman and Thorndike published a solution[37] with significant differences from Wright's. Their proposal centred on what they observed as irregular spacing of the inscriptions on the front dial face which to them seemed to indicate an off centre sun indicator arrangement, this would simplify the mechanism by removing the need to simulate the solar anomaly. They also suggested that rather than accurate planetary indication (rendered impossible by the offset inscriptions) there would be simple dials for each individual planet showing information such as key events in each planet's cycle, initial and final appearances in the night sky and apparent direction changes. This system would lead to a much simplified gear system, with much reduced forces and complexity, as compared to Wright's model.

Their proposal used simple meshed gear trains and accounted for the previously unexplained 63 toothed gear in fragment D. They proposed two face plate layouts, one with evenly spaced dials and another with a gap in the top of the face to account for criticism regarding their not using the apparent fixtures on the b1 gear. They proposed that rather than bearings and pillars for gears and axles they simply held weather and seasonal icons to be displayed through a window.[37]

In a paper published in 2012 Carman, Thorndike and Evans also proposed a system of epicyclic gearing with pin and slot followers.[39]

Freeth and Jones published their proposal in 2012 after extensive research and work they came up with a compact and feasible solution to the question of planetary indication. They also propose indicating the solar anomaly (that is, the sun's apparent position in the zodiac dial) on a separate pointer from the date pointer, which indicates the sun's mean position as well as the date on the month dial, if the two dials are correctly synchronised. Their front panel display is essentially the same as Wright's. Unlike Wright's model however, this model has not been physically built and is only a 3D computer model.

Internal gearing relationships of the Antikythera Mechanism, based on the Freeth and Jones proposal

The system to synthesise the solar anomaly is very similar to that used in Wright's proposal. Three gears, one fixed in the centre of the b1 gear and attached to the sun spindle, the other fixed on one of the spokes (in their proposal the one on the bottom left) acting as an idle gear and the final positioned next to that one, the final gear is fitted with an offset pin and over said pin an arm with a slot which is in turn attached to the sun spindle inducing anomaly as the mean sun wheel turns.

The inferior planet mechanism includes the sun (treated as a planet in this context), Mercury and Venus. For each of the three systems there is an epicyclic gear whose axis is mounted on b1, thus the basic frequency is the Earth year (as it is, in truth, for epicyclic motion in the sun and all the planets, excepting only the moon). Each meshes with a gear grounded to the mechanism frame. Each has a pin mounted, potentially on an extension of one side of the gear that enlarges the gear but doesn't interfere with the teeth; in some cases the needful distance between the gear's centre and the pin is farther than the radius of the gear itself. A bar with a slot along its length extends from the pin towards the appropriate coaxial tube, at whose other end is the object pointer, out in front of the front dials. The bars could have been full gears, though there is no need for the waste of metal, since the only working part is the slot. Also, using the bars avoids interference between the three mechanisms, which are each set on one of the four spokes of b1. Thus there is one new grounded gear (one was identified in the wreckage, and the second is shared by two of the planets), one gear used to reverse the direction of the sun anomaly, three epicyclic gears and three bars/coaxial tubes/pointers, which would qualify as another gear each. Five gears and three slotted bars in all.

The superior planets systems — Mars, Jupiter and Saturn — all follow the same general principle of the lunar anomaly mechanism. Like the inferior systems, each has a gear whose centre pivot is on an extension of b1, and which meshes with a grounded gear. It presents a pin and a centre pivot for the epicyclic gear which has a slot for the pin, and which meshes with a gear fixed to a coaxial tube and thence to the pointer. Each of the three mechanisms can fit within a quadrant of the b1 extension, and they are thus all on a single plane parallel with the front dial plate. Each one uses a ground gear, a driving gear, a driven gear and a gear/coaxial tube/pointer, thus twelve gears additional in all.

There are in total eight coaxial spindles of various nested sizes to transfer the rotations in the mechanism to the eight pointers. So in all, there are 30 original gears, seven gears added to complete calendar functionality, 17 gears and three slotted bars to support the six new pointers, for a grand total of 54 gears, three bars and eight pointers in Freeth and Jones' design.[31]

On the visual representation he supplies in the paper, the pointers on the front zodiac dial have small, round identifying stones. Interestingly, Freeth mentions a quote from an ancient papyrus:

...a voice comes to you speaking. Let the stars be set upon the board in accordance with [their] nature except for the Sun and Moon. And let the Sun be golden, the Moon silver, Kronos [Saturn] of obsidian, Ares [Mars] of reddish onyx, Aphrodite [Venus] lapis lazuli veined with gold, Hermes [Mercury] turquoise; let Zeus [Jupiter] be of (whitish?) stone, crystalline (?)...[40]

AccuracyEdit

Investigations by Freeth and Jones[31] reveal that their simulated mechanism is not particularly accurate, the Mars pointer being up to 38° off at times. This is not due to inaccuracies in gearing ratios or such in the mechanism, but rather to inadequacies in the Greek theory at that point in time. This could not have been improved until first Ptolemy introduced the equant in about 150 AD, and then when Johannes Kepler changed orbits to ellipses and broke from the concept of uniform motion and circular orbits in 1609 AD.

In short, the Antikythera Mechanism was a machine designed to predict celestial phenomena according to the sophisticated astronomical theories current in its day, the sole witness to a lost history of brilliant engineering, a conception of pure genius, one of the great wonders of the ancient world—but it didn’t really work very well!

In addition to theoretical accuracy, there is the matter of mechanical accuracy. Freeth and Jones note that the inevitable "looseness" in the mechanism due to the hand-built gears with their triangular teeth and the frictions between gears and in bearing surfaces would have probably swamped the finer solar and lunar correction mechanisms built into it:

Though the engineering was remarkable for its era, recent research indicates that its design conception exceeded the engineering precision of its manufacture by a wide margin—with considerable accumulative inaccuracies in the gear trains, which would have cancelled out many of the subtle anomaly corrections built into its design.

ReferencesEdit

  1. ^ "The Antikythera Mechanism Research Project". The Antikythera Mechanism Research Project. Retrieved 2007-07-01. "The Antikythera Mechanism is now understood to be dedicated to astronomical phenomena and operates as a complex mechanical 'computer' which tracks the cycles of the Solar System." 
  2. ^ Seaman, Bill; Rössler, Otto E. (1 January 2011). Neosentience: The Benevolence Engine. Intellect Books. p. 111. ISBN 978-1-84150-404-9. Retrieved 28 May 2013. "Mike G. Edmunds and colleagues used imaging and high-resolution X-ray tomography to study fragments of the Antikythera Mechanism, a bronze mechanical analog computer thought to calculate astronomical positions" 
  3. ^ Swedin, Eric G.; Ferro, David L. (24 October 2007). Computers: The Life Story of a Technology. JHU Press. p. 1. ISBN 978-0-8018-8774-1. Retrieved 28 May 2013. "It was a mechanical computer for calculating lunar, solar, and stellar calendars." 
  4. ^ Paphitis, Nicholas (30 November 2006). "Experts: Fragments an Ancient Computer". Washington Post. "Imagine tossing a top-notch laptop into the sea, leaving scientists from a foreign culture to scratch their heads over its corroded remains centuries later. A Roman shipmaster inadvertently did something just like it 2,000 years ago off southern Greece, experts said late Thursday." 
  5. ^ a b Price, Derek de Solla (1974). "Gears from the Greeks. The Antikythera Mechanism: A Calendar Computer from ca. 80 B. C.". Transactions of the American Philosophical Society, New Series 64 (7): 1–70. 
  6. ^ a b c d Freeth, Tony; Bitsakis, Yanis; Moussas, Xenophon; Seiradakis, John. H.; Tselikas, A.; Mangou, H.; Zafeiropoulou, M.; Hadland, R. et al. (30 November 2006). "Decoding the ancient Greek astronomical calculator known as the Antikythera Mechanism". Nature. 444 Supplement (7119): 587–91. Bibcode:2006Natur.444..587F. doi:10.1038/nature05357. PMID 17136087. Retrieved 20 May 2014. 
  7. ^ a b c d Marchant, Jo (30 November 2006). "In search of lost time". Nature 444 (7119): 534–538. Bibcode:2006Natur.444..534M. doi:10.1038/444534a. PMID 17136067. Retrieved 20 May 2014. 
  8. ^ "Decoding The Antikythera Mechanism - Investigation of An Ancient Astronomical Calculator". Bibliotecapleyades.net. Retrieved 2012-11-13. 
  9. ^ Vetenskapens värld: Bronsklumpen som kan förutsäga framtiden[dead link]. SVT. 17 october 2012.
  10. ^ Mark E. Rosheim (11 August 1994). Robot Evolution: The Development of Anthrobotics. John Wiley & Sons. p. 7. ISBN 978-0-471-02622-8. Retrieved 28 May 2013. "The Antikythera Mechanism (c. 87 BC) proves how sophisticated Greek technology was. and encrusted by twenty-one centuries of undersea exposure, X-ray examination revealed a complex mechanical computer in the Archimedean tradition of planetary construction." 
  11. ^ Harry Henderson (1 January 2009). Encyclopedia of Computer Science and Technology. Infobase Publishing. p. 13. ISBN 978-1-4381-1003-5. Retrieved 28 May 2013. "The earliest known analog computing device is the Antikythera mechanism." 
  12. ^ ORMUS: The Secret Alchemy of Mary Magdalene ~ Revealed ~ [Part A]. ORMUS® USA/Japan. December 2007. p. 4. ISBN 978-0-9793737-0-1. Retrieved 28 May 2013. "Being one of the world's oldest known geared devices, a major article in Scientific American entitled 'An ancient Greek computer', [June 1959] the theory that the Antikythera mechanism is a device specifically designed for calculating sidereal..." 
  13. ^ Pollard, Justin; Reid, Howard (30 October 2007). The Rise and Fall of Alexandria: Birthplace of the Modern World. Penguin Group US. p. 120. ISBN 978-1-4406-2083-6. Retrieved 28 May 2013. "Price's meticulous study of the cogs, gear ratios, and inscriptions enabled him to put together a model of how the Antikythera mechanism worked and what it did. The mechanism was a hugely sophisticated analog computer for calculating the ..." 
  14. ^ olson, parmy. "Could this have been the world's first computer?". 
  15. ^ Angelakis, Dimitris G. (2 May 2005). "Quantum Information Processing: From Theory to Experiment". Proceedings of the NATO Advanced Study Institute on Quantum Computation and Quantum Information. Chania, Crete, Greece: IOS Press. p. 5. ISBN 978-1-58603-611-9. Retrieved 28 May 2013. "The Antikythera mechanism, as it is now known, was probably the world's first 'analog computer' – a sophisticated device for calculating the motions of stars and planets. This remarkable assembly of more than 30 gears with a differential..." 
  16. ^ John Bolender (2010). The self-organizing social mind. MIT Press. p. 48. ISBN 978-0-262-01444-1. Retrieved 28 May 2013. "One feels an eerie excitement when hearing that the Antikythera mechanism of ancient Greece was a computer (figures 2.2 and 2.3)." 
  17. ^ a b Wilford, J. N. (31 July 2008). "Discovering how greeks computed in 100 BC". The New York Times. 
  18. ^ "Were there others? The Antikythera Mechanism Research Project". Antikythera-mechanism.gr. 27 May 2007. Archived from the original on 21 July 2011. Retrieved 24 August 2011.  |first1= missing |last1= in Authors list (help)
  19. ^ Lazos, Christos (1994). The Antikythera Computer. ?????S PUBLICATIONS GR. 
  20. ^ "What was it made of?". Antikythera Mechanism Research Project. 4 July 2007. Retrieved 16 May 2012. 
  21. ^ a b c d Freeth, Tony; Jones, Alexander; Steele, John M.; Bitsakis, Yanis (31 July 2008). "Calendars with Olympiad display and eclipse prediction on the Antikythera Mechanism". Nature 454 (7204): 614–617. Bibcode:2008Natur.454..614F. doi:10.1038/nature07130. PMID 18668103. 
  22. ^ "Decoding an ancient computer". www.cs.virginia.edu. 
  23. ^ Haughton, Brian (26 December 2006). Hidden History: Lost Civilizations, Secret Knowledge, and Ancient Mysteries. Career Press. pp. 43–44. ISBN 978-1-56414-897-1. Retrieved 16 May 2011. 
  24. ^ "Ancient 'computer' starts to yield secrets". Archived from the original on 13 March 2007. Retrieved 23 March 2007. 
  25. ^ Sample, Ian. "Mysteries of computer from 65BC are solved". The Guardian. ""This device is extraordinary, the only thing of its kind," said Professor Edmunds. "The astronomy is exactly right ... in terms of historic and scarcity value, I have to regard this mechanism as being more valuable than the Mona Lisa." and "One of the remaining mysteries is why the Greek technology invented for the machine seemed to disappear."" 
  26. ^ Johnston, Ian (30 November 2006). "Device that let Greeks decode solar system". The Scotsman. Retrieved 26 June 2007. 
  27. ^ a b Freeth, Tony; Jones, Alexander; Steele, John M.; Bitsakis, Yanis (31 July 2008). "Calendars with Olympiad display and eclipse prediction on the Antikythera Mechanism". Nature. 454 Supplement (7204): 614–7. Bibcode:2008Natur.454..614F. doi:10.1038/nature07130. PMID 18668103. Retrieved 20 May 2014. 
  28. ^ Wright, Michael T. (2007). "The Antikythera Mechanism reconsidered". Interdisciplinary Science Reviews 32 (1): 21–43. doi:10.1179/030801807X163670. Retrieved 18 May 2014. 
  29. ^ Marchant, Jo (2006). Decoding the Heavens. Da Capo Press. p. 180.  Wright tells of a piece breaking off in his inspection, which was glued back into place by the museum staff.
  30. ^ a b "The Cosmos on the front of the Antikythera Mechanism". 
  31. ^ a b c d e f g Freeth, Tony; Jones, Alexander (2012). "The Cosmos in the Antikythera Mechanism". Institute for the Study of the Ancient World. Retrieved 19 May 2014. 
  32. ^ Wright, Michael T. (March 2006). "The Antikythera Mechanism and the early history of the moon phase display". Antiquarian Horology 29 (3): 319–329. Retrieved 16 June 2014. 
  33. ^ Connor, S. (31 July 2008). "Ancient Device Was Used To Predict Olympic Games". The Independent (London). Retrieved 27 March 2010. 
  34. ^ "Olympic link to early 'computer'". BBC News. Retrieved 2008-12-15. 
  35. ^ Freeth, Tony (2006). "Decoding the Antikythera Mechanism: Supplementary Notes 2". Nature. Retrieved 20 May 2014. 
  36. ^ "Does it favour a Heliocentric, or Geocentric Universe?". Antikythera Mechanism Research Project. 27 July 2007. Archived from the original on 21 July 2011. Retrieved 24 August 2011. 
  37. ^ a b c Evans, James; Carman, Christian C.; Thorndyke, Alan (February 2010). "Solar anomaly and planetary displays in the Antikythera Mechanism". Journal for the history of astronomy xli: 1–39. Retrieved 20 May 2014. 
  38. ^ "Using Computation to Decode the First Known Computer". IEEE Computer Magazine. 2011-7. July 2011. 
  39. ^ Carman, Christian C.; Thorndyke, Alan; Evans, James (2012). "On the Pin-and-Slot Device of the Antikythera Mechanism, with a New Application to the Superior Planets". Journal for the History of Astronomy 43: 93–116. Bibcode:2012JHA....43...93C. Retrieved 21 May 2014. 
  40. ^ An extract from a 2nd or 3rd century AD papyrus (P.Wash.Univ.inv. 181+221) about an "Astrologer’s Board", where the astrologer lays out particular stones to represent the Sun, Moon and planets

Further readingEdit

BooksEdit

  • James, Peter; Thorpe, Nick (1995). Ancient Inventions. New York: Ballantine. ISBN 0-345-40102-6. 
  • Marchant, Jo (6 November 2008). Decoding the Heavens: Solving the Mystery of the World's First Computer. William Heinemann Ltd. ISBN 0-434-01835-X. 
  • Rosheim, Mark E. (1994). Robot Evolution: The Development of Anthrobotics. John Wiley & Sons. ISBN 0-471-02622-0. 
  • Russo, Lucio (2004). The Forgotten Revolution: How Science Was Born in 300 BC and Why It Had To Be Reborn. Berlin: Springer. ISBN 3-540-20396-6. 
  • Steele, J. M. (2000). Observations and Predictions of Eclipse Times by Early Astronomers. Dordrecht: Kluwer Academic. ISBN 0-7923-6298-5. 
  • Stephenson, F. R. (1997). Historical Eclipses and the Earth's Rotation. Cambridge, UK: Cambridge Univ. Press. ISBN 0-521-46194-4. 
  • Toomer, G. J. (1998). Ptolemy's Almagest (trans. Toomer, G. J.). Princeton, New Jersey: Princeton Univ. Press. 

JournalsEdit

OtherEdit

External linksEdit